Fast CQ Evaluation

Advanced Topics in Foundations of Databases, University of Edinburgh, 2019/20

Complexity of CQ

Theorem: It holds that:
 BQE(CQ) is NP-complete (combined complexity)
* BQE[D](€CQ) is NP-complete, for a fixed database D (query complexity)
* BQE[Q](CQ) isin LOGSPACE, for a fixed query Q € CQ (data complexity)

Proof:
(NP-membership) Consider a database D, and a Boolean CQ Q :- body

Guess a substitution h : terms(body) — terms(D)

Verify that h isa match of Qin D, i.e., h(body) € D
(NP-hardness) Reduction from 3-colorability

(LOGSPACE-membership) Inherited from BQE[Q](DRC)

Complexity of CQ

Theorem: It holds that:
 BQE(CQ) is NP-complete (combined complexity)
* BQE[D](€CQ) is NP-complete, for a fixed database D (query complexity)
* BQE[Q](CQ) isin LOGSPACE, for a fixed query Q € CQ (data complexity)

Evaluating a CQ Q over a database D takes time |D|°(I2D

Minimizing Conjunctive Queries

* Database theory has developed principled methods for optimizing CQs:
— Find an equivalent CQ with minimal number of atoms (the core)

— Provides a notion of “true” optimality

Q(x) :- R(xy), R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)

SN

Q(x) :- R(x,b), R(a,b), R(u,c), R(u,v), S(a,c,d)
o | L
Q(x) :- R(x,b), R(a,b), R(u,c), S(a,c,d)

minimal query

Minimizing Conjunctive Queries

* But, a minimal equivalent CQ might not be easier to evaluate - remains NP-hard

 “Good” classes of CQs for which query evaluation is tractable (in combined complexity):
— Graph-based

— Hypergraph-based

(Hyper)graph of Conjunctive Queries

Q . R(XIYIZ)I R(Z;U;V)i

graph of Q - G(Q) hypergraph of Q - H(Q)
Y
/ X \ X
y z y z
—
_—

“Good” Classes of Conjunctive Queries

measures how close a graphis to a tree
 Graph-based /
— CQs of bounded treewidth - their graph has bounded treewidth

measures how close a hypergraphis to an acyclic one
* Hypergraph-based: /
— CQs of bounded hypertree width - their hypergraph has bounded hypertree width
— Acyclic CQs - their hypergraph has hypertree width 1

Acyclic Hypergraphs

 Ajoin tree of a hypergraph H= (V,E) is a labeled tree T = (N,FL), where L:N = E
such that:
1. Foreach hyperedge e € E of H, there exists n € N such that e = L(n)

2. Foreach nodeu € VofH, theset{n €N | u € L(n)} induces a connected

subtree of T

T

{1131415161718} {9110111}

{1,2,3} {11,12}

{12,13}

Acyclic Hypergraphs

 Ajoin tree of a hypergraph H= (V,E) is a labeled tree T = (N,FL), where L:N = E
such that:
1. Foreach hyperedge e € E of H, there exists n € N such that e = L(n)

2. Foreach nodeu € VofH, theset {n €N | u € A(n)}induces a connected

subtree of T

{1,3,4,5,6,7,8} {9,10,11}

{1,2,3} {11,212} ,

4
/
/
/
2

\g.b 10 condition 2 is violated {12@

1
1
/

Acyclic Hypergraphs

 Ajoin tree of a hypergraph H= (V,E) is a labeled tree T = (N,FL), where L:N = E
such that:
1. Foreach hyperedge e € E of H, there exists n € N such that e = L(n)
2. Foreach nodeu € VofH, theset {n € N | u € A(n)}induces a connected

subtree of T

* Definition: A hypergraph is acyclic if it has a join tree

prime example of a cyclic hypergraph

Acyclic Hypergraphs

 Ajoin tree of a hypergraph H= (V,E) is a labeled tree T = (N,FL), where L:N = E
such that:
1. Foreach hyperedge e € E of H, there exists n € N such that e = L(n)
2. Foreach nodeu € VofH, theset {n € N | u € A(n)}induces a connected

subtree of T

* Definition: A hypergraph is acyclic if it has a join tree

but this is acyclic

Relevant Algorithmic Tasks

ACYCLICITY

Input: a query Q € CQ

Question: is Q acyclic? or is H(Q) acyclic?

{Q € €CQ | H(Q) is acyclic}

/

¥
BQE(ACQ)
Input: a database D, a Boolean query Q € ACQ

Question: is Q(D) non-empty?

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

{1,3,4,5,6,7,8} {9,10,11}
{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

{1,3,4,5,6,7,8} {9,10,11}
{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

{1,3,4,5,6,7,8} {9,10,11}
{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

{1,3,4,5,6,7,8} {9,10,11}
{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

{1,3,4,5,6,7,8} {9,10,11}
{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

{1,3,4,5,6,7,8} {9,10,11}

{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

{1,3,4,5,6,7,8} {9,10,11}

{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

T~

{1,3,4,5,6,7,8} {9,10,11}

{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

T

{1,3,4,5,6,7,8} {9,10,11}

{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

T

{1,3,4,5,6,7,8} {9,10,11}

{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

T

{1,3,4,5,6,7,8} {9,10,11}

{1,2,3} {11,12}

{12,13}

Checking Acyclicity

Via the GYO-reduction (Graham, Yu and Ozsoyoglu)
1. Eliminate nodes occurring in at most one hyperedge

2. Eliminate hyperedges that are empty or contained in other hyperedges

Theorem: A hypergraph H is acyclic iff GYO(H) = @
U
checking whether H is acyclic is feasible in polynomial time, and if it is

the case, a join tree can be found in polynomial time

(]
Theorem: ACYCLICITY isin PTIME

Checking Acyclicity

Theorem: ACYCLICITY isin PTIME

NOTE: actually, we can check whether a CQ is acyclic in time O(|Q]|)

linear time in the size Q

Evaluating Acyclic CQs

Theorem: BQE(ACQ) isin PTIME

NOTE: actually, if H(Q) is acyclic, then Q can be evaluated in time O(|D| - |Q])

linear time inthe size of D and Q

Yannakaki’s Algorithm

Dynamic programming algorithm over the join tree

Given a database D, and an acyclic Boolean CQ Q
1. Computethejoin tree T of H(Q)
2. Assigntoeach node of T the corresponding relation of D
3. Compute semi-joins in a bottom up traversal of T
4. Return YES if the resulting relation at the root of T is non-empty;

otherwise, return NO

Yannakaki’s Algorithm: Step 1

Q :- Ri(X1,%2,%3), Ra(X2,X3), Ra(Xs,Xs), R3(X3), Ra(Xz,X4,X3)

{x2,%3}

T

{Xs,X¢} {X1,%2,X3}

T

{X3} {X21X4IX3}

Yannakaki’s Algorithm: Step 2

X3 | X3
¢, | b,
¢, | by
c, bg
Xs | Xg
¢, | b,
¢, | by
c, | bg
X3
b,
b,

X | X | X3
St | ¢ | by
St | ¢ | by
S3 | ¢ | by
S3 | ¢ | by
S, | ¢ | bs

Xp | Xg | X3
C; | @ | by
¢; | @ | by
c; | @, | by

Yannakaki’s Algorithm

X | X3
¢; | b
¢; | by
c, bg

Xs | Xg
¢, | b,
¢, | by
C, | bg

X | X | X3
S; | ¢ | by
St | ¢ | by
S3 | ¢ | by
s——6er—bh
S, | ¢ | bs

Xp | Xg | X3
C; | @ | by
¢; | @ | by
c; | @, | by

Yannakaki’s Algorithm

X | X3
¢; | b
¢; | by
c, bg

Xs | Xg
¢, | b,
¢, | by
C, | bg

X1 | X3 | X3
Sy | € | by
S | € | by
S3 | C3 | by
C 0~ l’\

=3 ~1 ~4
~ ~ L\

Sy—T—€r—"3

Xp | Xg | X3
C; | @ | by
¢; | @ | by
c; | @, | by

Yannakaki’s Algorithm

X | X3
¢; | b
¢; | by
c, bg

Xs | Xg
¢, | b,
¢, | by
C, | bg

X1 | X3 | X3
Sy | € | by
S | € | by
| g
ST €3 O1
C 0~ l’\
=3 ~1 ~4
~ ~ L\

X3 | Xg | X3
C; | @ | by
¢; | @ | by
c; | @, | by

Yannakaki’s Algorithm:

X, | Xs
¢; | b
¢; | by
. b

CT—T7%

Xs | Xg
¢, | b,
¢, | by
C, | bg

X1 | X3 | X3
Sy | € | by
S | € | by
| g
ST €3 O1
C 0~ l’\
=3 ~1 ~4
~ ~ L\

X3 | Xg | X3
C; | @ | by
¢; | @ | by
c; | @, | by

Yannakaki’s Algorithm:

X, | Xs
¢; | b
¢; | by
. b

CT—T7%

Xs | Xg
¢, | b,
¢, | by
C, | bg

YES

X1 | X3 | X3
Sy | € | by
S | € | by
| g
ST €3 O1
C 0~ l’\
=3 ~1 ~4
~ ~ L\

X3 | Xg | X3
C; | @ | by
¢; | @ | by
c; | @, | by

Acyclic CQs: Recap

ACYCLICITY

Input: a query Q € CQ

Question: is Q acyclic? or is H(Q) acyclic?

BQE(ACQ)
Input: a database D, a Boolean query Q € ACQ

Question: is Q(D) non-empty?

both problems are feasible in linear time

Query Optimization

Replace a given CQ with one that is much faster to execute
or

Replace a given CQ with one that falls in a “good” class of CQs

;

preferably, with an acyclic CQ

since evaluationis in linear time

Semantic Acyclicity

Definition: A CQ Q is semantically acyclic if there exists an acyclic CQ Q' suchthat Q= Q'

Q(x,z) :- R(xy), R(y,z), R(x,w), R(w,z)

wey, zy} ///

Qxz) - Rixy), R(y,2) G D D

Relevant Algorithmic Tasks

SemACYCLICITY
Input: a query Q € CQ
Question: is there an acyclic CQ Q" such thatQ = Q’?

{Q € €CQ | Q semantically acyclic}

/

[4
BQE(SACQ)

Input: a database D, a Boolean query Q € SACQ

Question: is Q(D) non-empty?

Checking Semantic Acyclicity

Theorem: A CQ Q is semantically acyclic iff its core is acyclic

Theorem: SemACYCLICITY is NP-complete

Proof idea (upper bound):
* If Qis semantically acyclic, then there exists an acyclic CQ Q' such that |Q’| < |Q]

and Q = Q" (why?)
 Then, we can guess in polynomial time:
— AnacyclicCQQ’ suchthat |Q’'| <|Q]
— A mapping h; : terms(Q) — terms(Q’)
— A mappingh, : terms(Q’) = terms(Q)
* And verify in polynomial time that h, is a query homomorphism from Qto Q' (i.e.,

Q" € Q), and h, is a query homomorphism from Q' to Q (i.e.,, Q € Q')

Evaluating Semantically Acyclic CQs

f(lal) + OfIbl -1Ql)

/N

compute the equivalent evaluate the equivalent
acyclic CQ acyclic CQ

an improvement compareto | D] for evaluating arbitrary CQs

Theorem: BQE(SACQ) is fixed-parameter tractable

Evaluating Semantically Acyclic CQs

Theorem: BQE(SACQ) is in PTIME

assuming Q belongs to SACQ: Q(D) is non-empty & Q —3,¢ D

/

the duplicator has a winning strategy
for the existential 1-cover game,

which can be checked in polynomial time

Semantically Acyclic CQs: Recap

SemACYCLICITY

Input: a query Q € CQ

Question: is there an acyclic CQ Q" such thatQ = Q’?

NP-complete - but no database isinvolved

BQE(SACQ)
Input: a database D, a Boolean query Q € SACQ

Question: is Q(D) non-empty?

in PTIME (combined complexity)

Recap

* “Good” classes of CQs for which query evaluation is tractable - conditions

based on the graph or hypergraph of the CQ

* Acyclic CQs - their hypergraph is acyclic, can be checked in linear time

e Evaluating acyclic CQs in feasible in linear time (Yannakaki’s algorithm)

* Semanticacyclicity - difficult to check, but ensures tractable evaluation

