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Complexity	of	CQ

Theorem: It	holds	that:

• BQE(CQ)	is	NP-complete	(combined	complexity)

• BQE[D](CQ)	 is	NP-complete,	for	a	fixed	database	D	(query	complexity)

• BQE[Q](CQ)	 is	in	LOGSPACE,	for	a	fixed	query	Q ∈ CQ (data	complexity)

Proof:

(NP-membership)Consider	a	database	D,	and	a	Boolean	CQ	Q	:- body

Guess	a	substitution	h	:	terms(body)	→ terms(D)

Verify	that	h	is	a	match	of	Q in	D,	i.e.,	h(body)	⊆ D

(NP-hardness) Reduction	from	3-colorability

(LOGSPACE-membership) Inherited	from	BQE[Q](DRC)



Complexity	of	CQ

Theorem: It	holds	that:

• BQE(CQ)	is	NP-complete	(combined	complexity)

• BQE[D](CQ)	 is	NP-complete,	for	a	fixed	database	D	(query	complexity)

• BQE[Q](CQ)	 is	in	LOGSPACE,	for	a	fixed	query	Q ∈ CQ (data	complexity)

Evaluating	a	CQ	Q over	a	database	D takes	time	|D|O(|Q|)



Minimizing	Conjunctive	Queries

• Database	theory	has	developed	principled	methods	for	optimizing	CQs:

‒ Find	an	equivalent	CQ	with	minimal	number	of	atoms	(the	core)

‒ Provides	a	notion	of	“true”	optimality

Q(x)		:- R(x,y),	R(x,b),	 R(a,b),	R(u,c),	R(u,v),	S(a,c,d)

Q(x)		:- R(x,y),	R(x,b),	 R(a,b),	R(u,c),	R(u,v),	S(a,c,d)

{y	↦ b}

Q(x)		:- R(x,y),	R(x,b),	 R(a,b),	R(u,c),	R(u,v),	S(a,c,d)

{v	↦ c}

minimal	query



Minimizing	Conjunctive	Queries

• But,	a	minimal	equivalent	CQ	might	not	be	easier	to	evaluate	 - remains	NP-hard

• “Good”	classes	of	CQs	for	which	query	evaluation	is	tractable	(in	combined	complexity):

‒ Graph-based

‒ Hypergraph-based



(Hyper)graph	of	Conjunctive	Queries

Q		:- R(x,y,z),	R(z,u,v),	R(v,w,x)

graph	of	Q - G(Q)	 hypergraph	of	Q - H(Q)	
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“Good”	Classes	of	Conjunctive	Queries

• Graph-based

‒ CQs	of	bounded	treewidth - their	graph	has	bounded	treewidth

• Hypergraph-based:

‒ CQs	of	bounded	hypertree width - their	hypergraph	has	bounded	hypertreewidth

‒ Acyclic	CQs		- their	hypergraph has	hypertree width	1

measures	how	close	a	graph	is	to	a	tree

measures	how	close	a	hypergraph	is	to	an	acyclic	one



Acyclic	Hypergraphs

• A	join	tree of	a	hypergraph	H =	(V,E)	is	a	labeled	tree	T =	(N,F,L),	where L :	N	→ E

such	that:

1. For	each	hyperedge	e	∈ E	of	H,	there	exists	n	∈ N	such	that	e	=	L(n)

2. For	each	node	u	∈ V	of	H,	the	set	{n	∈ N	|	u	∈ L(n)}	induces	a	connected

subtree	of	T
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Acyclic	Hypergraphs

• A	join	tree of	a	hypergraph	H =	(V,E)	is	a	labeled	tree	T =	(N,F,L),	where L :	N	→ E

such	that:

1. For	each	hyperedge	e	∈ E	of	H,	there	exists	n	∈ N	such	that	e	=	L(n)

2. For	each	node	u	∈ V	of	H,	the	set	{n	∈ N	|	u	∈ λ(n)}	induces	a	connected

subtree	of	T
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Acyclic	Hypergraphs

• A	join	tree of	a	hypergraph	H =	(V,E)	is	a	labeled	tree	T =	(N,F,L),	where L :	N	→ E

such	that:

1. For	each	hyperedge	e	∈ E	of	H,	there	exists	n	∈ N	such	that	e	=	L(n)

2. For	each	node	u	∈ V	of	H,	the	set	{n	∈ N	|	u	∈ λ(n)}	induces	a	connected

subtree	of	T

• Definition: A	hypergraph is	acyclic if	it	has	a	join	tree

1

32
prime	example	of	a	cyclic	hypergraph



Acyclic	Hypergraphs

• A	join	tree of	a	hypergraph	H =	(V,E)	is	a	labeled	tree	T =	(N,F,L),	where L :	N	→ E

such	that:

1. For	each	hyperedge	e	∈ E	of	H,	there	exists	n	∈ N	such	that	e	=	L(n)

2. For	each	node	u	∈ V	of	H,	the	set	{n	∈ N	|	u	∈ λ(n)}	induces	a	connected

subtree	of	T

• Definition: A	hypergraph is	acyclic if	it	has	a	join	tree

1

32
but	this	is	acyclic



Relevant	Algorithmic	Tasks

ACYCLICITY

Input:	a	query	Q ∈ CQ

Question: is	Q acyclic?		or		is	H(Q)	acyclic?

BQE(ACQ)

Input:	a	database	D,	a	Boolean	query	Q ∈ ACQ

Question: is	Q(D)	non-empty?	

{Q ∈ CQ |	H(Q)	is	acyclic}



Checking	Acyclicity
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2. Eliminate	hyperedges that	are	empty	or	contained	in	other	hyperedges
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Checking	Acyclicity

Via	the	GYO-reduction (Graham,	Yu	and	Ozsoyoglu)

1. Eliminate	nodes	occurring	in	at	most	one	hyperedge

2. Eliminate	hyperedges that	are	empty	or	contained	in	other	hyperedges

Theorem: A	hypergraphH is	acyclic	iff GYO(H)	=	∅

⇓

checking	whether	H is	acyclic	is	feasible	in	polynomial	time,	and	if	it	is	

the	case,	a	join	tree	can	be	found	in	polynomial	time

⇓

Theorem: ACYCLICITY	 is	in	PTIME



Checking	Acyclicity

Theorem: ACYCLICITY	 is	in	PTIME

NOTE: actually,	we	can	check	whether	a	CQ	is	acyclic	in	time	O(|Q|)	

linear	time in	the	size	Q



Evaluating	Acyclic	CQs

NOTE: actually,	if	H(Q)	is	acyclic,	then	Q can	be	evaluated	in	time	O(|D|	⋅ |Q|)

linear	time in	the	size	of	D and	Q

Theorem: BQE(ACQ)	is	in	PTIME



Yannakaki’s Algorithm

Given	a	database	D,	and	an	acyclic	Boolean	CQ	Q

1. Compute	the	join	tree	T of	H(Q)

2. Assign	to	each	node	of	T the	corresponding	relation	of	D

3. Compute	semi-joins	in	a	bottom	up	traversal	of	T

4. Return	YES	if	the	resulting	relation	at	the	root	of	T is	non-empty;	

otherwise,	return	NO

Dynamic	programming	algorithm	over	the	join	tree



Yannakaki’s Algorithm:	Step	1

Q		:- R1(x1,x2,x3),	R2(x2,x3),	R2(x5,x6),	R3(x3),	R4(x2,x4,x3)

{x2,x3}

{x1,x2,x3}{x5,x6}

{x2,x4,x3}{x3}



Yannakaki’s Algorithm:	Step	2

x1 x2 x3
s1 c1 b1
s1 c1 b2
s3 c3 b1
s3 c1 b4
s2 c2 b3

x2 x4 x3
c1 a1 b1
c1 a1 b2
c1 a2 b2

x3
b1
b2

x2 x3
c1 b2
c1 b1
c4 b6

x5 x6
c1 b2
c1 b1
c4 b6



Yannakaki’s Algorithm:	Step	3

x1 x2 x3
s1 c1 b1
s1 c1 b2
s3 c3 b1
s3 c1 b4
s2 c2 b3

x2 x4 x3
c1 a1 b1
c1 a1 b2
c1 a2 b2

x3
b1
b2

x2 x3
c1 b2
c1 b1
c4 b6

x5 x6
c1 b2
c1 b1
c4 b6
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b1
b2

x2 x3
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c4 b6
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c1 b2
c1 b1
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Yannakaki’s Algorithm:	Step	3

x1 x2 x3
s1 c1 b1
s1 c1 b2
s3 c3 b1
s3 c1 b4
s2 c2 b3

x2 x4 x3
c1 a1 b1
c1 a1 b2
c1 a2 b2

x3
b1
b2

x2 x3
c1 b2
c1 b1
c4 b6

x5 x6
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Yannakaki’s Algorithm:	Step	3

x1 x2 x3
s1 c1 b1
s1 c1 b2
s3 c3 b1
s3 c1 b4
s2 c2 b3

x2 x4 x3
c1 a1 b1
c1 a1 b2
c1 a2 b2

x3
b1
b2

x2 x3
c1 b2
c1 b1
c4 b6

x5 x6
c1 b2
c1 b1
c4 b6



Yannakaki’s Algorithm:	Step	4

x1 x2 x3
s1 c1 b1
s1 c1 b2
s3 c3 b1
s3 c1 b4
s2 c2 b3

x2 x4 x3
c1 a1 b1
c1 a1 b2
c1 a2 b2

x3
b1
b2

x2 x3
c1 b2
c1 b1
c4 b6

x5 x6
c1 b2
c1 b1
c4 b6

YES



Acyclic	CQs:	Recap

ACYCLICITY

Input:	a	query	Q ∈ CQ

Question: is	Q acyclic?		or		is	H(Q)	acyclic?

BQE(ACQ)

Input:	a	database	D,	a	Boolean	query	Q ∈ ACQ

Question: is	Q(D)	non-empty?	

both	problems	are	feasible	in	linear	time



Query	Optimization

Replace	a	given	CQ	with	one	that	is	much	faster	to	execute

or

Replace	a	given	CQ	with	one	that	falls	in	a	“good”	class	of	CQs

preferably,	with	an	acyclic	CQ	

since	evaluation	is	in	linear	time



Semantic	Acyclicity

Definition: A	CQ	Q is	semantically	acyclic if	there	exists	an	acyclic	CQ	Q’ such	that	Q≡ Q’

Q(x,z)		:- R(x,y),	R(y,z),	R(x,w),	R(w,z)

{w	↦ y,	z	↦ y}

Q(x,z)		:- R(x,y),	R(y,z)

w

yx z

yx z



Relevant	Algorithmic	Tasks

SemACYCLICITY

Input:	a	query	Q ∈ CQ

Question: is	there	an	acyclic	CQ	Q’ such	that	Q	≡	Q’?

BQE(SACQ)

Input:	a	database	D,	a	Boolean	query	Q ∈ SACQ

Question: is	Q(D)	non-empty?	

{Q ∈ CQ |	Q semantically	acyclic}



Checking	Semantic	Acyclicity

Theorem: A	CQ	Q is	semantically	acyclic	iff its	core	is	acyclic

Theorem: SemACYCLICITY is	NP-complete

Proof	idea	(upper	bound):

• If	Q is	semantically	acyclic,	then	there	exists	an	acyclic	CQ	Q’ such	that	|Q’|	≤	|Q|	

and	Q≡ Q’	(why?)

• Then,	we	can	guess	in	polynomial	time:

‒ An	acyclic	CQ	Q’ such	that	|Q’|	≤	|Q|

‒ A	mapping	h1 :	terms(Q)	→ terms(Q’)

‒ A	mapping	h2 :	terms(Q’)	→ terms(Q)

• And	verify	in	polynomial	time	that	h1	is	a	query	homomorphism	from	Q	to Q’ (i.e.,	

Q’ ⊆ Q),	and	h2	is	a	query	homomorphism	from	Q’	to Q (i.e.,	Q ⊆ Q’)



Evaluating	Semantically	Acyclic	CQs

Theorem: BQE(SACQ)	is	fixed-parameter	tractable

f(∣Q∣)			+			O(∣D∣ ⋅ ∣Q∣)

compute	the	equivalent
acyclic	CQ

evaluate	the	equivalent	
acyclic	CQ

an	improvement	compare	to	|D|O(|Q|)	 	for	evaluating	arbitrary	CQs	



Evaluating	Semantically	Acyclic	CQs

Theorem: BQE(SACQ)	is	in	PTIME

assuming	Q belongs	to	SACQ:		Q(D)	is	non-empty			⇔ Q →∃1C D

the	duplicator	has	a	winning	strategy

for	the	existential	1-cover	game,

which	can	be	checked	in	polynomial	time



Semantically	Acyclic	CQs:	Recap

SemACYCLICITY

Input:	a	query	Q ∈ CQ

Question: is	there	an	acyclic	CQ	Q’ such	that	Q	≡	Q’?

BQE(SACQ)

Input:	a	database	D,	a	Boolean	query	Q ∈ SACQ

Question: is	Q(D)	non-empty?	

NP-complete		- but	no	database	is	involved

in	PTIME	(combined	complexity)



Recap

• “Good”	classes	of	CQs	for	which	query	evaluation	is	tractable		- conditions	

based	on	the	graph	or	hypergraph of	the	CQ

• Acyclic	CQs		- their	hypergraph is	acyclic,	can	be	checked	in	linear	time

• Evaluating	acyclic	CQs	in	feasible	in	linear	time	(Yannakaki’s algorithm)

• Semantic	acyclicity - difficult	to	check,	but	ensures	tractable	evaluation


